
Force sensing in surgical robots is challenging and often lacks 
cost-effective solutions, resulting in minimal haptic feedback, 
making safe tissue manipulation challenging. While some 
solutions use robot and visual data to estimate force, they 
have limitations in their adaptability to unseen visual 
scenariosa. Here, we present a versatile approach that 
combines a learning-based module for tissue contact 
detection with a local stiffness model for force estimation. 
This approach offers scalability and adaptability to various 
surgical scenarios,  by requiring minimal fine-tuning using 
crowd-source human labels instead of sensor measurements 
and works without the need for access to the robot state and 
camera parameters.

Introduction

Methods

Dataset
• 46 demonstrations of a da Vinci Research Kit (dVRK) patient-side manipulator (PSM) performing various 

actions on simulated tissue from nine viewpoints and manipulator configurations (see Figure 1).
• PSM joint encoder, joint torques, stereo images, ground truth force data were recorded at 30Hz. 
• Camera parameters are unknown. 
• Training, validation, and test split sets had 16, 8, and 22 demonstrations, with each demonstration 

including over 3,000 video frames from the left and right cameras each.
• Visual contact labels were crowdsourced with Amazon Mechanical Turk. 
• Ground truth contact labels were generated from force sensor data by classifying forces above a 0.2 N 

threshold as “in contact”.
System Design
Vision-based Contact Detector: 
• Classifies tissue contact. 
• Uses EfficientNetB3 as a feature encoder to predict contact from images.
• Trained with crowd-sourced contact labels (VisualContact) or ground truth contact (GTContact)
• Image augmentation was performed using randomized image transformations.

Different approaches to force estimation based on availability of robot state information:
• Contact-conditional Local Force and Stiffness Estimation (with Robot State Information)

o Combines vision-based contact signals with robot end-effector force and position measurements to 
estimate material stiffness. 

o A stiffness ෠𝑘𝑖 is estimated from the noisy torque-based end-effector force estimates using linear 
regression (Stiffness Estimator in Figure 2). 

o Benchmark force estimation models use visual contact signals and ෠𝑘𝑖 estimated from ground truth 
force (VisualContactGTStiff), ground truth force and ground truth stiffness (GTContact) and position 
difference from the end-effector combined with stiffness constants estimated using 𝐹𝑃𝑆𝑀 (PosDiff). 

• Contact-conditional Local Force Estimation (with No Robot State Information)
o Vision-based Normalized Position Estimator (see Figure 2) is a fully connected neural network that 

estimates 3D end-effector positions from 8 keypoints extracted by DeepLabCutb from the video 
frames.
▪ Trained two variants (stereo and monocular image streams). 

o Vision-based normalized positions are used to estimate contact-conditional forces, eliminating the 
need for robot state data. 

o Uses arbitrary scaling coefficients 𝑘𝑖, which are benchmarked against constants fit using ground truth 
force measurements.

Training Parameters
• Vision-based Contact Detection: 

o EfficientNetB3 was trained for 150 epochs with a batch size of 32, and hyperparameters were 
determined using a pseudo-randomized grid search. 

• Vision-based Normalized Position Estimator: 
o 2 neural network variants - a stereo network and a mono network. Using a hyperparameter grid 

search, learning rate and L2 regularization were chosen to be 0.0001, and training was carried out 
over 200 epochs using a batch size of 32.

Table 1. RMSE values of force estimation methods
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• F1 score of crowd-sourced labels against ground truth: 0.968
• F1 score of vision-based contact detection method trained on crowd-sourced labels against ground 

truth: 0.974
• The root mean squared error (RMSE) for stiffness estimates between GTContact and VisualContact 

were between 41 to 63 Nm-1 in each of the Cartesian force directions.
• VisualContact shows better performance than the position difference method PosDiff and the naïve  

joint-torque based approach.
• There was a smaller error increase from GTContact to VisualContactGTStiff than VisualContactGTStiff 

to VisualContact suggesting that error was mainly from stiffness estimation using FPSM, especially in the 
Z direction.

• Full vision performs similarly to the naïve Joint torque-based method. 

Method
RMSE(Nm-1)

Norm x y z

Joint torque-based 1.709  ± 0.172 1.096± 0.129 0.821± 0.092 1.007± 0.195

GTContact 0.948± 0.161 0.621± 0.129 0.563± 0.13 0.424± 0.101

VisualContactGTStiff 0.955 ± 0.156 0.619± 0.128 0.560± 0.126 0.445± 0.106

VisualContact (our approach) 1.114± 0.175 0.611± 0.125 0.542± 0.113 0.721± 0.24

PosDiff 1.477± 0.191 0.736± 0.107 0.716± 0.15 1.042± 0.213

FullVision 1.758± 0.316 0.834± 0.17 0.847± 0.232 1.264± 0.319

Figure 1. Hardware setup to detect contact and 
estimate force at the surgical end-effector

Results & Discussion

Model
RMSE

Overall x y z

Stereo 0.083 ± 0.023 0.049 ± 0.011 0.116 ± 0.038 0.085 ± 0.020

Mono 0.094 ± 0.016 0.051 ± 0.010 0.136 ± 0.024 0.096 ± 0.014

Table 2. RMSE values of vision-based normalized position estimator
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Figure 3. Best fit stiffness models based on either force sensor readings, or the estimated end effector forces using joint torques, with 
contact conditional displacement reading from joint encoders.
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Figure 5. Example force predictions from a manipulation demonstration for the different type of force estimation methods that were tested.

Figure 4. Normalized position estimates from the mono image and stereo image variants of the vision-based position estimator neural 
networks compared to that of the ground truth from the joint encoders. The position estimator networks take as input the pixel coordinates 
of eight instrument keypoints identified from Deep Lab Cut.
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Figure 2. Methods for contact detection and force estimation: (Left) When there is no robot state available for force estimation. (Right) 
When robot position and joint torque estimates are available.

𝐹𝑃𝑆𝑀,𝑡 = ෠𝑘𝑖𝑥𝑡
𝐹𝑉𝑖𝑠𝑖𝑜𝑛,𝑡 = 𝑘𝑖𝑥𝑡
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