
MapReduce for Temporal Transitive Closure
Shuyuan Yang

Case Western Reserve University

Cleveland, USA

sxy841@case.edu

Zekun Feng

Case Western Reserve University

Cleveland, USA

zxf205@case.edu

Xiaoyi Leng

Case Western Reserve University

Cleveland, USA

xxl1332@case.edu

Figure 1. OpenFlights Airports Database contains over 10,000 airports.

Abstract
Transitive closure is a classic concept in graph theory, that

given relations 𝐴 → 𝐵 and 𝐵 → 𝐶 , you can infer a new

relation 𝐴→ 𝐶 . Temporal transitive closure is the process

of extending the transitive closure principle to temporal

relations. It can be used to efficiently query and analyze data

when handling time-based data.

In this paper, we convert a connection flight query prob-

lem into a directed graph with temporal transitive closure.

By taking advantage of OpenFlights data, We generated a

large number of flight routes as our dataset. In order to search

flights, we implemented two algorithms: Floyd–Warshall and

depth-first search (DFS). And running both algorithms for

sequential and paralleled MapReduce editions on a Hadoop

cluster. Eventually, we compared the performance of the two

algorithms with two editions on datasets of multiple scales.

Keywords: Temporal Transitive Closure, Floyd–Warshall,

MapReduce, DFS, Hadoop

1 Introduction
1.1 Introduction
In today’s world, air travel has become a commonplace

mode of transportation, and individuals are accustomed to

checking flight routes before embarking on their journey.

As part of the flight booking process, we usually input the

departure and destination points on the airline’s website,

and choose one or two airports for layovers among the nu-

merous airports worldwide, or select a direct flight. From

a computer science perspective, the task of querying flight

routes involves a Temporal Transitive problem that must be

addressed with each search. In this paper, we explore the

Temporal Transitive Closure in the context of a connection

flight query problem. We convert the problem into a directed

graph, using OpenFlights data to generate a large number of

flight routes as our dataset. We implement two algorithms,

Floyd–Warshall and depth-first search (DFS), and run both

algorithms for sequential and parallel MapReduce editions

on a Hadoop cluster. We compare the performance of the

two algorithms with two editions on datasets of multiple

scales.

2 Background
2.1 Temporal Transitive Closure algorithms
Transitive Closure is a concept used in discrete mathematics

and graph theory to describe the transitivity of relations. In

traditional transitive closure algorithms, relationships are

typically assumed to be static, representing the transitivity

between elements. A transitive closure matrix represents the

transitive relationship between points. For example, even

if there is no direct connection from point A to point C,

but there exists a path from A to B to D and then to C, the

transitive closure matrix would indicate a value of 1 for the

relationship between point A and point C, indicating the

transitive connection.

However, in specific situations, relationships may con-

tain temporal characteristics, which means they change over

time. Take aviation as an example, the relationships between



Shuyuan Yang, Zekun Feng, and Xiaoyi Leng

flights can evolve as schedules vary over time, affecting the

connectivity between flights. In our project, we query the

path of the different airlines from A to B in the range time

T. The Temporal Transitive Closure[5] algorithm addresses

this by considering temporal constraints to compute transi-

tive closures that incorporate time-dependent properties. By

incorporating time factors into the computation of transitive

closures, the Temporal Transitive Closure algorithm ensures

that the resulting closure adheres to temporal constraints. It

is proved effective in solving problems in the fields of time-

based path planning, temporal analysis, correlation analysis,

etc. Furthermore, the Temporal Transitive Closure algorithm

offers a more accurate and practical approach to computing

transitive closures, enhancing the precision and efficiency of

relationship analysis within time-constrained environments.

2.2 MapReduce
MapReduce[1] is a programming model used to process var-

ious large-scale datasets. In this model, data processing is

divided into two stages: the map stage and the reduce stage.

In themap stage, the input data is divided into smaller chunks

and processed independently using a mapping function to

generate key-value pairs. In the reduce stage, the interme-

diate pairs are grouped by key, and a reducing function is

applied to each group to produce the final output. During

processing, the underlying system automatically performs

large parallel computations, effectively utilizing disk and

network resources and reducing execution time.

MapReduce is a powerful model for distributed data pro-

cessing, enabling efficient analysis of big data in various

domains like web search, social network analysis, and ge-

nomics research.

2.3 Apache Hadoop(HDFS, MapReduce, YARN)
Apache Hadoop[6] is one of the best open-source tools for

addressing data processing challenges using a distributed

architecture. It consists of three main components: Hadoop

Distributed File System (HDFS),MapReduce, and Yet Another

Resource Negotiator (YARN).

HDFS provides reliable and scalable storage for big data.

YARNmanages computing resources across the cluster. In the

Hadoop, MapReduce breaks down the big data into smaller

data and performs them. It enables efficient analysis of big

data through distributed storage, parallel processing, and

resource management.

3 Methodology
3.1 Preliminary Conceptualization of the Algorithm
There exist numerous solutions for addressing the Transitive

Closure problem. Considering our data structure, We opine

that the most convenient form is to construct a directed

graph using the data available, where each node corresponds

to an airport, and each edge symbolizes a flight route with its

duration as its weight. This approach provides the flexibility

to experiment with various algorithms. Since we choose as

Python our programming language it can very efficiently

manage large data sets. When We came across the problem

of transitive closure, We immediately thought of the Floyd-

Warshall algorithm due to its reputation for efficiency.

3.2 Floyd–Warshall Algorithm

Algorithm 1 FLOYD-WARSHALL (sequential)

Require: A graph 𝐺 = (𝑉 , 𝐸) with weighted edges

Ensure: All-pairs shortest paths in 𝐺
1: 𝑛 ← number of vertices in 𝐺

2: 𝐷 (0) ← the 𝑛 × 𝑛 matrix of edge weights

3: for 𝑘 ← 1 to 𝑛 do
4: for 𝑖 ← 1 to 𝑛 do
5: for 𝑗 ← 1 to 𝑛 do
6: if 𝐷 (𝑘−1)

𝑖, 𝑗
> 𝐷

(𝑘−1)
𝑖,𝑘

+ 𝐷 (𝑘−1)
𝑘,𝑗

then

7: 𝐷
(𝑘 )
𝑖, 𝑗
← 𝐷

(𝑘−1)
𝑖,𝑘

+ 𝐷 (𝑘−1)
𝑘,𝑗

8: else
9: 𝐷

(𝑘 )
𝑖, 𝑗
← 𝐷

(𝑘−1)
𝑖, 𝑗

10: end if
11: end for
12: end for
13: end for
14: return 𝐷 (𝑛)

15: procedure Countpath(𝐺, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑,𝑇 )
16: 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← FLOYD-WARSHALL(𝐺)

17: if 𝑝𝑎𝑡ℎ ← [𝑒𝑛𝑑]and 𝑝𝑎𝑡ℎ[−1] ≠ 𝑠𝑡𝑎𝑟𝑡 then
18: 𝑝𝑎𝑡ℎ.append(𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 [𝑠𝑡𝑎𝑟𝑡] [𝑝𝑎𝑡ℎ[−1]])
19: end if
20: 𝑡𝑜𝑡𝑎𝑙_𝑓 𝑙𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑠𝑡𝑎𝑟𝑡] [𝑒𝑛𝑑]
21: if 𝑡𝑜𝑡𝑎𝑙_𝑓 𝑙𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒 ≤ 𝑇 .𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 then
22: join(path)

23: end if
24: return path

25: end procedure

Floyd-Warshall algorithm [4], is a well-known algorithm

used to solve the transitive closure problem. The main advan-

tage of the Warshall algorithm is its efficiency and simplicity.

It can solve the transitive closure problem in 𝜃 (𝑁 3) time

complexity, where n is the number of nodes in the graph.

This makes it particularly useful for large-scale problems

with many nodes. Instead of considering how many roads

to take, Warshall algorithm thinks in terms of intermediate

points. Warshall divides the route from point A to point B

into two types: those that pass-through point 0 and those

that do not. Then, it is divided into those that pass-through

point 1 and those that do not, and so on, until the final in-

termediate point. This concept of intermediate point is very

similar to that of an airport used for transferring flights,

which is highly relevant to the problem at hand. Therefore,



MapReduce for Temporal Transitive Closure

in this article, we decided to use this algorithm as the first

solution to solve the temporal transitive closure problem. In

terms of the code, We have designed a "countpath" function.

This function requires a directed graph, a starting airport,

a destination airport, and a time limit as inputs. The first

step is to use the BFS algorithm to get all flights that can

be linked to the starting airport. The second step is to use

the Floyd-Warshall algorithm to get the shortest path be-

tween the starting airport and the destination airport. While

calculating the shortest path from the start to the end, the

predecessor node of each node on the path is also recorded

and stored in a dictionary. After the shortest path is calcu-

lated, it will check whether there is a path from the start to

the end. If there is, the path is constructed by searching for

its predecessor nodes from the end node and storing these

nodes in a "path" list in order. Finally, the path is reversed

to obtain the path from the start to the end. The last step is

to filter out the eligible routes by comparing the total flight

time with the time limit.

3.3 DFS Algorithm

Algorithm 2 DFS (sequential)

1: procedure Countpath(𝐺, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑏) ⊲ Initialize all

vertices as not visited

2: for all 𝑣 ∈ 𝐺.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 do
3: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] ← false
4: end for
5: return DFS(𝐺 , 𝑠𝑡𝑎𝑟𝑡 , 𝑒𝑛𝑑 , 𝑇 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)

6: end procedure
7: procedure DFS(𝐺, 𝑣, 𝑒𝑛𝑑,𝑇 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑) ⊲ Mark the current

vertex as visited

8: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] ← true
9: 𝑐𝑜𝑢𝑛𝑡 ← 0

10: if 𝑣 = 𝑒𝑛𝑑 then
11: return 1

12: end if
13: for all𝑤 ∈ 𝐺.𝑎𝑑 𝑗𝑎𝑐𝑒𝑛𝑡_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑣) do
14: if not 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑤] then
15: 𝑡𝑜𝑡𝑎𝑙_𝑓 𝑙𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒 ← 𝐺 [𝑣] [𝑤] [′𝑤𝑒𝑖𝑔ℎ𝑡 ′]
16: if 𝑡𝑜𝑡𝑎𝑙_𝑓 𝑙𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒 ≤ 𝑇 .𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 then
17: 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡+ DFS(𝐺 , 𝑤 , 𝑒𝑛𝑑 , 𝑇 ,

𝑣𝑖𝑠𝑖𝑡𝑒𝑑)

18: end if
19: end if
20: end for
21: return 𝑐𝑜𝑢𝑛𝑡

22: end procedure

The DFS (Depth-First Search)[7] algorithm is a commonly

used technique for traversing or searching trees or graphs. Its

fundamental concept involves starting from a vertex in the

graph, traversing along a path as far as possible, backtracking

to the previous node, and continuing down another path until

all nodes have been visited.

Compared to the Warshall algorithm, the DFS algorithm

boasts a lower space complexity. It only requires a stack to

store nodes during the traversal process, while the Warshall

algorithm needs to construct a two-dimensional matrix to

store the relationships between each node. In terms of pro-

gramming, we also designed a function similar to before,

named Countpath. This function also requires a directed

graph, a starting airport, a destination airport, and a time

limit. In this function, the first step is to use the DFS algo-

rithm to obtain all flight paths from the starting airport to

the destination airport. Then, the flight time of each path

is compared to the time limit to obtain the flight paths that

meet the constraints. However, an issue with this approach

is the possibility of closed loops formed by flight paths when

search depth is not limited. To address this problem and re-

duce the required computation time, the default search depth

was set to 3 in this experiment.

3.4 MapReduce Algorithm

Algorithm 3MapReduce

1: procedureMapper(𝑉 , 𝐸,𝑇 )

2: for all 𝑒 ∈ 𝐸 do
3: if 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ≤ 𝑇 then
4: std::out← e

5: end if
6: end for
7: end procedure
8: procedure Reducer(𝑉 , 𝐸, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑,𝑇 )
9: for all 𝑒 ∈ 𝐸 do
10: G’(V’, E’)← e

11: end for
12: DFS(𝐺 ′, 𝑠𝑡𝑎𝑟𝑡 , 𝑒𝑛𝑑 , 𝑇 ) | FLOYD-WARSHALL(𝐺 ′,

𝑠𝑡𝑎𝑟𝑡 , 𝑒𝑛𝑑 , 𝑇 )

13: end procedure

To speed up the algorithm’s running time, the mapper’s

primary task is to read data in parallel. In this case, we split

the dataset into equal parts and send them to the mappers.

Each mapper queries the flight time of each received flight

route in sequence and sends all flight routes that meet the

temporal query criteria to the MapReduce core in the format

of (𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠) key-value pairs.
Subsequently, MapReduce sorts all the received key-value

pairs and sends them to the reducer. The reducer, based on

the received key-value pairs, adds edges to a new subgraph in

sequence, ultimately forming a subgraph that meets the time

conditions. Compared to the original graph, this subgraph

greatly reduces the number of vertices and edges. Based

on this subgraph, the reducer is able to call either Warshall

or DFS, any path search algorithm. It then finds paths that



Shuyuan Yang, Zekun Feng, and Xiaoyi Leng

completely meet the time conditions based on the provided

source and destination.

4 Experiment
4.1 Environment
In order to realistically demonstrate the parallel computing

capabilities of MapReduce, we created 4 identical virtual

machines on a Xeon
®
server. Each virtual machine has 2

processor cores, 8GB of memory, and 40GB of SSD storage

space. The communication bandwidth between the virtual

machines is determined by the disk I/O. In this case, the

upper limit is about 2 Gbps, which is similar to the typical

cluster. These 4 nodes form an Apache Hadoop cluster, with

each node serving not only as a DataNode for HDFS and a

WorkerNode for computation but also handling part of the

cluster’s task and resource allocation.

Figure 2. Hadoop Architecture.

The specific architecture implemented is shown in Figure

2. Cluster-1 and Cluster-3 are the master node and backup

master node of the entire cluster, respectively, managing

HDFS and controlling access to files. Cluster-2 hosts YARN,

which splits the data according to demand and prepares to

send it to worker containers. For this cluster, each node has 8

v-core containers and there are total 32 containers. Therefore,

we set the default number of data partitions as 30, which can

run all jobs at once.

Considering that our experiments involve multiple algo-

rithms and a large amount of data processing work, we chose

to write our programs in Python instead of Java, which is

originally supported by Hadoop. Although this may sac-

rifice some runtime efficiency, it does not affect the way

MapReduce works. Specifically, as shown in Figure 2, our

programs communicate with the Hadoop core through the

Hadoop Streaming API. Each container runs the mapper and

reducer programs separately, with data passed through the

standard I/O interface. Similar to the original MapReduce

program, during the Mapper phase, each container receives

data partitions that have been split by YARN. After the Map-

per computation is completed, the intermediate data is sent

back to Hadoop and sorted before being sent to the reduce

worker for final output processing.

4.2 Dataset
4.2.1 Data Type Filling. The foundational data for our
study was obtained from the OpenFlights website. Specif-

ically, we downloaded three distinct data packages - "air-

port.dat," "airlines.dat," and "routes.dat" - each of which pro-

vided relevant information for our research. The "airport.dat"

package contained the names of airports, their respective

countries of origin, as well as their respective latitude and

longitude coordinates and time zone information. The "air-

lines.dat" package provided the names and IDs of airlines as

well as their locations. The "routes.dat" package provided

information on flight routes, including the departure and

arrival airports, as well as the number of intermediate stops

made during the flight. We utilized the Pandas library to

read and store the data packages in DataFrame format. Af-

ter removing any irrelevant data elements, we merged the

information using Pandas’ merge function to create a new

DataFrame. At this point, we have completed the initial pro-

cessing stage.

4.2.2 Data completion. It should be noted that "flight du-

ration," a crucial piece of information for the research, was

unavailable in the OpenFlights data. To overcome this limi-

tation, a simulation approach was adopted. Specifically, we

calculated the distance between the two airports using their

respective latitude and longitude coordinates and assumed

a flight speed between 800 km/h and 900 km/h, generating

a random flight speed within this range. Using these pa-

rameters, flight duration, departure and arrival times were

calculated, accounting for time zone differences. To simu-

late flight duration, we removed rows with missing data or

identical departure and arrival airports, as well as non-zero

intermediate stops. These critical elements were appended

to the processed DataFrame and subsequently stored in a

CSV file.

4.2.3 Random Generation. In order to show the perfor-

mance of our algorithms in the project, we extended the data-

base based on the available data under reasonable conditions.

We randomly selected source and destination airports from

the "airport.dat". To ensure the completeness of the dataset,

we also randomly assigned airlines based on countries. Dur-

ing the random generation process, we deleted duplicate

routes where the source and destination airports were the

same. In the "airport.dat", each airport has two codes, the

IATA code and the ICAO code. Some airports have missing

IATA codes, so there might be cases where certain routes

have missing values. We removed such data during the gen-

eration process. Once we generated a sufficient amount of

data to demonstrate performance, we used this ".dat" file into

the project.



MapReduce for Temporal Transitive Closure

4.3 Results and Analysis
As Figure 3 shown, we found that the sequential DFS algo-

rithm has faster running speeds when the dataset is small.

However, as the size of the dataset increases, its running time

grows exponentially. In contrast, the running time of the

MapReduce algorithm remains stable within a large range,

with only a gentle upward trend when the dataset is very

large.

Figure 3. DFS performance comparison.

We believe this is because, during the operation of MapRe-

duce, the startup of the cluster, task allocation, and data dis-

tribution occupy most of the time. Therefore, even though

the dataset is small, MapReduce still cannot complete its ex-

ecution in a short period. When the dataset is large enough,

each node is allocated enough data slices, and only then does

the computation time become significant.

Figure 4. Warshall performance comparison.

Figure 4 displays the performance of Warshall algorithms.

The performance of the sequential edition is similar to that of

the DFS algorithm, with running time growing exponentially.

When the dataset is too large, it cannot complete the query

within tens of minutes. The performance of MapReduce also

declines significantly when the dataset is large. However,

we observed that the running time growth of the mapper

is similar to that of DFS. On the other hand, the reducer

consumes a significant amount of time.We speculate that this

is due to the high time complexity of the Warshall algorithm,

as our MapReduce program uses a large number of mappers

and only one reducer.

In fact, the Warshall algorithm is not well-suited to the

MapReduce workflow. We cannot distribute the process of

traversing and finding paths to multiple reducers, as com-

plete paths cannot be found on incomplete graphs. Although

we used some strategies to limit the number of edges sent

to the reducer, overly large datasets still put considerable

pressure on a single reducer.

5 Related Works
In this paper, we mainly used Warshall and DFS algorithms

to calculate paths for Temporal Transitive Closure in di-

rected graphs. Both of these classic algorithms can solve

the flight route query problem, but each has its drawbacks.

The Warshall algorithm is designed to calculate the shortest

paths in a graph, with a time complexity of 𝜃 (𝑁 3). Although
the mapper can more efficiently transform Temporal Transi-

tive Closure into a weighted directed graph in parallel, the

reducer still requires a significant amount of time for the

Warshall algorithm to traverse paths. One potential solution

is to use multiple MapReduce iterations to subdivide the

reducer’s task.

In comparison, the time complexity of the DFS algorithm

appears more efficient. However, the original DFS algorithm

cannot handle directed graphs with cycles, and cycles are a

common occurrence in flight route graphs. We chose to use

parameters to limit the maximum depth of DFS, but such

a strategy may result in an inability to obtain overly long

potential paths. Although in real flight route query scenarios,

connection flights with more than two stops are rare, most

existing flight route queries also limit the number of stops

to two.

In fact, the flight route query problem based on Tempo-

ral Transitive Closure can be considered as a path search

problem in graph theory. There are already many algorithms

for path search, such as Greedy Best First Search (GBFS) [2]

and Dijkstra’s algorithm [3]. As a result, a potential research

direction is to combine more path search algorithms with

MapReduce to solve Temporal Transitive Closure queries.



Shuyuan Yang, Zekun Feng, and Xiaoyi Leng

Moreover, our research shows that MapReduce has sig-

nificant advantages in computing large-scale data. This ad-

vantage is not limited to the runtime efficiency of paral-

lel computing; this non-shared memory parallel computing

greatly reduces hardware requirements. In our experiments,

we found that the sequential algorithm would encounter

memory overflow errors when running on extremely large

datasets. In contrast, MapReduce avoids memory shortages

since each container only receives a small portion of the data

slices.

6 Conclusion
In our project, we generated a substantial amount of data

through randomization using available data. The purpose of

this approach was to validate the performance of our parallel

algorithms using a large dataset.We compared the time taken

by DFS and Warshall algorithms in sequential, mapper, and

MapReduce total execution. The MapReduce total execution

consistently demonstrated stability and speed, showcasing

its high availability and Scalability.

References
[1] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data

processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[2] Rina Dechter and Judea Pearl. 1985. Generalized best-first search

strategies and the optimality of A. Journal of the ACM (JACM) 32,
3 (1985), 505–536.

[3] Edsger Wybe Dijkstra. 1959. Communication with an automatic com-

puter. (1959).

[4] Robert W Floyd. 1962. Algorithm 97: Shortest path. Commun. ACM 5,

6 (1962), 345.

[5] Vincent J Kovarik. 1994. An Efficient Method for Representing and

Computing Transitive Closure Over Temporal Relations. (1994).

[6] Jyoti Nandimath, Ekata Banerjee, Ankur Patil, Pratima Kakade, Saumi-

tra Vaidya, and Divyansh Chaturvedi. 2013. Big data analysis using

Apache Hadoop. In 2013 IEEE 14th International Conference on Informa-
tion Reuse & Integration (IRI). IEEE, 700–703.

[7] Charles Pierre Trémaux. 1865. Considérations sur les corps d’état

appliquées à la guerre. Annales des Ponts et Chaussées 9 (1865), 5–110.

A Experiment
A.1 Source code
Codes are available on Google Drive.

B Responsibility

Table 1. Tasks assignment

Shuyuan Zekun Xiaoyi

Data preprocessing ✓ ✓
Random generation ✓
Experiment env setup ✓
DFS algorithm ✓
Warshall algorithm ✓ ✓
MapReduce algorithm ✓

https://drive.google.com/file/d/1EEfjesaqy6ClcfUcrtZr5Un01qFTMk82/view?usp=sharing

	Abstract
	1 Introduction
	1.1 Introduction

	2 Background
	2.1 Temporal Transitive Closure algorithms
	2.2 MapReduce
	2.3 Apache Hadoop(HDFS, MapReduce, YARN)

	3 Methodology
	3.1 Preliminary Conceptualization of the Algorithm
	3.2 Floyd–Warshall Algorithm
	3.3 DFS Algorithm
	3.4 MapReduce Algorithm

	4 Experiment
	4.1 Environment
	4.2 Dataset
	4.3 Results and Analysis

	5 Related Works
	6 Conclusion
	References
	A Experiment
	A.1 Source code

	B Responsibility

